Package: geoGAM 0.1-3

geoGAM: Select Sparse Geoadditive Models for Spatial Prediction

A model building procedure to build parsimonious geoadditive model from a large number of covariates. Continuous, binary and ordered categorical responses are supported. The model building is based on component wise gradient boosting with linear effects, smoothing splines and a smooth spatial surface to model spatial autocorrelation. The resulting covariate set after gradient boosting is further reduced through backward elimination and aggregation of factor levels. The package provides a model based bootstrap method to simulate prediction intervals for point predictions. A test data set of a soil mapping case study in Berne (Switzerland) is provided. Nussbaum, M., Walthert, L., Fraefel, M., Greiner, L., and Papritz, A. (2017) <doi:10.5194/soil-3-191-2017>.

Authors:Madlene Nussbaum [cre, aut], Andreas Papritz [ths]

geoGAM_0.1-3.tar.gz
geoGAM_0.1-3.zip(r-4.5)geoGAM_0.1-3.zip(r-4.4)geoGAM_0.1-3.zip(r-4.3)
geoGAM_0.1-3.tgz(r-4.4-any)geoGAM_0.1-3.tgz(r-4.3-any)
geoGAM_0.1-3.tar.gz(r-4.5-noble)geoGAM_0.1-3.tar.gz(r-4.4-noble)
geoGAM_0.1-3.tgz(r-4.4-emscripten)geoGAM_0.1-3.tgz(r-4.3-emscripten)
geoGAM.pdf |geoGAM.html
geoGAM/json (API)

# Install 'geoGAM' in R:
install.packages('geoGAM', repos = c('https://nussbaummadlene.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • berne - Berne - soil mapping case study
  • berne.grid - Berne - very small extract of prediction grid

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.30 score 20 scripts 213 downloads 2 exports 17 dependencies

Last updated 1 years agofrom:d7eb363e97. Checks:OK: 5 NOTE: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 11 2024
R-4.5-winNOTENov 11 2024
R-4.5-linuxNOTENov 11 2024
R-4.4-winOKNov 11 2024
R-4.4-macOKNov 11 2024
R-4.3-winOKNov 11 2024
R-4.3-macOKNov 11 2024

Exports:bootstrapgeoGAM

Dependencies:FormulagrpreginumlatticelibcoinMASSMatrixmboostmgcvmvtnormnlmennlspartykitquadprogrpartstabssurvival

Readme and manuals

Help Manual

Help pageTopics
Berne - soil mapping case studyberne
Berne - very small extract of prediction gridberne.grid
Bootstrapped predictive distributionbootstrap bootstrap.default bootstrap.geoGAM
Select sparse geoadditive modelgeoGAM
Methods for 'geoGAM' objectsplot plot.geoGAM print print.geoGAM summary summary.geoGAM
Prediction from fitted geoGAM modelpredict predict.default predict.geoGAM